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Exercise 8.9.4 Consider the equation ax2 +bxy+ cy2 =
d, where b 6= 0. Introduce new variables x1 and y1 by
rotating the axes counterclockwise through an angle θ .
Show that the resulting equation has no x1y1-term if θ is
given by

cos 2θ = a−c√
b2+(a−c)2

sin2θ = b√
b2+(a−c)2

[Hint: Use equation (8.8) preceding Theorem 8.9.2
to get x and y in terms of x1 and y1, and substitute.]

Exercise 8.9.5 Prove properties (1)–(5) preceding Ex-
ample 8.9.4.

Exercise 8.9.6 If A
c∼ B show that A is invertible if and

only if B is invertible.

Exercise 8.9.7 If x = (x1, . . . , xn)
T is a column of vari-

ables, A = AT is n× n, B is 1× n, and c is a constant,
xT Ax+Bx= c is called a quadratic equation in the vari-
ables xi.

a. Show that new variables y1, . . . , yn can be found
such that the equation takes the form

λ1y2
1 + · · ·+λry

2
r + k1y1 + · · ·+ knyn = c

b. Put x2
1 +3x2

2 +3x2
3+4x1x2−4x1x3+5x1−6x3 = 7

in this form and find variables y1, y2, y3 as in (a).

Exercise 8.9.8 Given a symmetric matrix A, define
qA(x) = xT Ax. Show that B

c∼ A if and only if B is
symmetric and there is an invertible matrix U such that
qB(x) = qA(Ux) for all x. [Hint: Theorem 8.9.3.]

Exercise 8.9.9 Let q(x) = xT Ax be a quadratic form
where A = AT .

a. Show that q(x)> 0 for all x 6= 0, if and only if A is
positive definite (all eigenvalues are positive). In
this case, q is called positive definite.

b. Show that new variables y can be found such that
q = ‖y‖2 and y = Ux where U is upper triangu-
lar with positive diagonal entries. [Hint: Theo-
rem 8.3.3.]

Exercise 8.9.10 A bilinear form β on Rn is a function
that assigns to every pair x, y of columns in Rn a number
β (x, y) in such a way that

β (rx+ sy, z) = rβ (x, z)+ sβ (y, z)

β (x, ry+ sz) = rβ (x, z)+ sβ (x, z)

for all x, y, z in Rn and r, s in R. If β (x, y) = β (y, x) for
all x, y, β is called symmetric.

a. If β is a bilinear form, show that an n× n matrix
A exists such that β (x, y) = xT Ay for all x, y.

b. Show that A is uniquely determined by β .

c. Show that β is symmetric if and only if A = AT .

8.10 An Application to Constrained Optimization

It is a frequent occurrence in applications that a function q = q(x1, x2, . . . , xn) of n variables, called an
objective function, is to be made as large or as small as possible among all vectors x = (x1, x2, . . . , xn)
lying in a certain region of Rn called the feasible region. A wide variety of objective functions q arise in
practice; our primary concern here is to examine one important situation where q is a quadratic form. The
next example gives some indication of how such problems arise.
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Example 8.10.1
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A politician proposes to spend x1 dollars annually on health
care and x2 dollars annually on education. She is constrained
in her spending by various budget pressures, and one model of this
is that the expenditures x1 and x2 should satisfy a constraint like

5x2
1 +3x2

2 ≤ 15

Since xi ≥ 0 for each i, the feasible region is the shaded area
shown in the diagram. Any choice of feasible point (x1, x2) in this
region will satisfy the budget constraints. However, these choices
have different effects on voters, and the politician wants to choose

x = (x1, x2) to maximize some measure q = q(x1, x2) of voter satisfaction. Thus the assumption is
that, for any value of c, all points on the graph of q(x1, x2) = c have the same appeal to voters.
Hence the goal is to find the largest value of c for which the graph of q(x1, x2) = c contains a
feasible point.
The choice of the function q depends upon many factors; we will show how to solve the problem
for any quadratic form q (even with more than two variables). In the diagram the function q is
given by

q(x1, x2) = x1x2

and the graphs of q(x1, x2) = c are shown for c = 1 and c = 2. As c increases the graph of
q(x1, x2) = c moves up and to the right. From this it is clear that there will be a solution for some
value of c between 1 and 2 (in fact the largest value is c = 1

2

√
15 = 1.94 to two decimal places).

The constraint 5x2
1 +3x2

2 ≤ 15 in Example 8.10.1 can be put in a standard form. If we divide through

by 15, it becomes
(

x1√
3

)2
+
(

x2√
5

)2
≤ 1. This suggests that we introduce new variables y = (y1, y2) where

y1 =
x1√

3
and y2 =

x2√
5
. Then the constraint becomes ‖y‖2 ≤ 1, equivalently ‖y‖ ≤ 1. In terms of these new

variables, the objective function is q =
√

15y1y2, and we want to maximize this subject to ‖y‖ ≤ 1. When
this is done, the maximizing values of x1 and x2 are obtained from x1 =

√
3y1 and x2 =

√
5y2.

Hence, for constraints like that in Example 8.10.1, there is no real loss in generality in assuming that
the constraint takes the form ‖x‖ ≤ 1. In this case the principal axes theorem solves the problem. Recall
that a vector in Rn of length 1 is called a unit vector.

Theorem 8.10.1

Consider the quadratic form q = q(x) = xT Ax where A is an n×n symmetric matrix, and let λ1

and λn denote the largest and smallest eigenvalues of A, respectively. Then:

1. max{q(x) | ‖x‖ ≤ 1}= λ1, and q(f1) = λ1 where f1 is any unit λ1-eigenvector.

2. min{q(x) | ‖x‖ ≤ 1}= λn, and q(fn) = λn where fn is any unit λn-eigenvector.

Proof. Since A is symmetric, let the (real) eigenvalues λi of A be ordered as to size as follows:

λ1 ≥ λ2 ≥ ·· · ≥ λn
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By the principal axes theorem, let P be an orthogonal matrix such that PT AP = D = diag (λ1, λ2, . . . , λn).
Define y= PT x, equivalently x= Py, and note ‖y‖= ‖x‖ because ‖y‖2 = yT y = xT (PPT )x= xT x= ‖x‖2.
If we write y = (y1, y2, . . . , yn)

T , then

q(x) = q(Py) = (Py)T A(Py)

= yT (PT AP)y = yT Dy

= λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.9)

Now assume that ‖x‖ ≤ 1. Since λi ≤ λ1 for each i, (8.9) gives

q(x) = λ1y2
1 +λ2y2

2 + · · ·+λny2
n ≤ λ1y2

1 +λ1y2
2 + · · ·+λ1y2

n = λ1‖y‖2 ≤ λ1

because ‖y‖= ‖x‖ ≤ 1. This shows that q(x) cannot exceed λ1 when ‖x‖ ≤ 1. To see that this maximum
is actually achieved, let f1 be a unit eigenvector corresponding to λ1. Then

q(f1) = fT
1 Af1 = fT

1 (λ1f1) = λ1(f
T
1 f1) = λ1‖f1‖2 = λ1

Hence λ1 is the maximum value of q(x) when ‖x‖ ≤ 1, proving (1). The proof of (2) is analogous.

The set of all vectors x in Rn such that ‖x‖ ≤ 1 is called the unit ball. If n = 2, it is often called the
unit disk and consists of the unit circle and its interior; if n = 3, it is the unit sphere and its interior. It is
worth noting that the maximum value of a quadratic form q(x) as x ranges throughout the unit ball is (by
Theorem 8.10.1) actually attained for a unit vector x on the boundary of the unit ball.

Theorem 8.10.1 is important for applications involving vibrations in areas as diverse as aerodynamics
and particle physics, and the maximum and minimum values in the theorem are often found using advanced
calculus to minimize the quadratic form on the unit ball. The algebraic approach using the principal axes
theorem gives a geometrical interpretation of the optimal values because they are eigenvalues.

Example 8.10.2

Maximize and minimize the form q(x) = 3x2
1 +14x1x2 +3x2

2 subject to ‖x‖ ≤ 1.

Solution. The matrix of q is A =

[
3 7
7 3

]
, with eigenvalues λ1 = 10 and λ2 =−4, and

corresponding unit eigenvectors f1 =
1√
2
(1, 1) and f2 =

1√
2
(1, −1). Hence, among all unit vectors

x in R2, q(x) takes its maximal value 10 at x = f1, and the minimum value of q(x) is −4 when
x = f2.

As noted above, the objective function in a constrained optimization problem need not be a quadratic
form. We conclude with an example where the objective function is linear, and the feasible region is
determined by linear constraints.
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Example 8.10.3
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2000x1+ 1100x2 = 11300

1200x1+ 1300x2 = 8700

x1

x2

A manufacturer makes x1 units of product 1, and x2 units
of product 2, at a profit of $70 and $50 per unit respectively,
and wants to choose x1 and x2 to maximize the total profit
p(x1, x2) = 70x1 +50x2. However x1 and x2 are not arbitrary; for
example, x1 ≥ 0 and x2 ≥ 0. Other conditions also come into play.
Each unit of product 1 costs $1200 to produce and requires 2000
square feet of warehouse space; each unit of product 2 costs $1300
to produce and requires 1100 square feet of space. If the total
warehouse space is 11 300 square feet, and if the total production
budget is $8700, x1 and x2 must also satisfy the conditions

2000x1 +1100x2 ≤ 11300

1200x1 +1300x2 ≤ 8700

The feasible region in the plane satisfying these constraints (and x1 ≥ 0, x2 ≥ 0) is shaded in the
diagram. If the profit equation 70x1 +50x2 = p is plotted for various values of p, the resulting
lines are parallel, with p increasing with distance from the origin. Hence the best choice occurs for
the line 70x1 +50x2 = 430 that touches the shaded region at the point (4, 3). So the profit p has a
maximum of p = 430 for x1 = 4 units and x2 = 3 units.

Example 8.10.3 is a simple case of the general linear programming problem23 which arises in eco-
nomic, management, network, and scheduling applications. Here the objective function is a linear com-
bination q = a1x1 + a2x2 + · · ·+ anxn of the variables, and the feasible region consists of the vectors
x=(x1, x2, . . . , xn)

T in Rn which satisfy a set of linear inequalities of the form b1x1+b2x2+· · ·+bnxn≤ b.
There is a good method (an extension of the gaussian algorithm) called the simplex algorithm for finding
the maximum and minimum values of q when x ranges over such a feasible set. As Example 8.10.3 sug-
gests, the optimal values turn out to be vertices of the feasible set. In particular, they are on the boundary
of the feasible region, as is the case in Theorem 8.10.1.

8.11 An Application to Statistical Principal Component

Analysis

Linear algebra is important in multivariate analysis in statistics, and we conclude with a very short look
at one application of diagonalization in this area. A main feature of probability and statistics is the idea
of a random variable X , that is a real-valued function which takes its values according to a probability
law (called its distribution). Random variables occur in a wide variety of contexts; examples include the
number of meteors falling per square kilometre in a given region, the price of a share of a stock, or the
duration of a long distance telephone call from a certain city.

The values of a random variable X are distributed about a central number µ , called the mean of X .
The mean can be calculated from the distribution as the expectation E(X) = µ of the random variable X .

23More information is available in “Linear Programming and Extensions” by N. Wu and R. Coppins, McGraw-Hill, 1981.


